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1 Correlation and Regression 

Basic terms and concepts 
1. A scatter plot is a graphical representation of the relation between two or more variables.  In 

the scatter plot of two variables x and y, each point on the plot is an x-y pair. 

2. We use regression and correlation to describe the variation in one or more variables. 

A. The variation is the sum 
of the squared deviations 
of a variable. 

N
2

i=1

Variation= x-x  

B. The variation is the 
numerator of the 
variance of a sample: 

N
2

i=1

x-x

Variance=
N-1

 

C. Both the variation and the 
variance are measures 
of the dispersion of a 
sample. 

3. The covariance between two 
random variables is a statistical measure of the degree to which the two variables move together. 

A. The covariance captures how one variable is different from its mean as the other variable 
is different from its mean. 

B. A positive covariance indicates that the variables tend to move together; a negative 
covariance indicates that the variables tend to move in opposite directions. 

C. The covariance is calculated as the ratio of the covariation to the sample size less one: 

N

i i

i=1

(x -x)(y -y)

Covariance = 
N-1

 

where N  is the sample size 
xi is the ith observation on variable x, 
x  is the mean of the variable x observations, 
yi is the ith observation on variable y, and 
y  is the mean of the variable y 

observations. 

D. The actual value of the covariance is not meaningful 
because it is affected by the scale of the two 
variables.  That is why we calculate the correlation 
coefficient – to make something interpretable from 
the covariance information. 

E. The correlation coefficient, r, is a measure of the 
strength of the relationship between or among 
variables. 

Calculation: 

Example1:  Home sale prices and square footage 

Home sales prices (vertical axis) v. square footage for a sample 
of 34 home sales in September 2005 in St. Lucie County. 

 

Note: Correlation does not 
imply causation.  We may say 
that two variables X and Y are 
correlated, but that does not 
mean that X causes Y or that Y 
causes X – they simply are 
related or associated with one 
another. 
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Example 2: Calculating the correlation coefficient 

    
Deviation 

of x 

Squared 
deviation of 

x 
Deviation 

of y 

Squared 
deviation of 

y 
Product of 
deviations 

Observation x y  x- x  (x- x )2 y- y  (y- y )2 (x- x )(y- y ) 

1 12 50  -1.50 2.25 8.40 70.56 -12.60 

2 13 54  -0.50 0.25 12.40 153.76 -6.20 

3 10 48  -3.50 12.25 6.40 40.96 -22.40 

4 9 47  -4.50 20.25 5.40 29.16 -24.30 

5 20 70  6.50 42.25 28.40 806.56 184.60 

6 7 20  -6.50 42.25 -21.60 466.56 140.40 

7 4 15  -9.50 90.25 -26.60 707.56 252.70 

8 22 40  8.50 72.25 -1.60 2.56 -13.60 

9 15 35  1.50 2.25 -6.60 43.56 -9.90 

10 23 37  9.50 90.25 -4.60 21.16 -43.70 

Sum 135 416  0.00 374.50 0.00 2,342.40 445.00 
Calculations: 

x  = 135/10 = 13.5 

y  = 416 / 10 = 41.6 

2
xs = 374.5 / 9 = 41.611 

2
ys  = 2,342.4 / 9 = 260.267 

r = 
445/9 49.444

= =0.475
(6.451)(16.133)41.611 260.267

 

 

i. The type of relationship is represented by the correlation coefficient: 

r =+1  perfect positive correlation 

+1 >r > 0 positive relationship 

r = 0  no relationship 

0 > r > 1 negative relationship 

r = 1  perfect negative correlation 

ii. You can determine the degree of correlation by looking at the scatter graphs. 

 If the relation is upward there is positive correlation.  

 If the relation downward there is negative correlation. 
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iii. The correlation coefficient is bound by –1 and +1.  The closer the coefficient to –1 or +1, 
the stronger is the correlation. 

iv. With the exception of the extremes (that is, r = 1.0 or r = -1), we cannot really 
talk about the strength of a relationship indicated by the correlation coefficient 
without a statistical test of significance. 

v. The hypotheses of interest regarding the population correlation, , are: 

Null hypothesis  H0:  = 0 

In other words, there is no correlation between the two variables 

Alternative hypothesis Ha:  =/   0 

In other words, there is a correlation between the two variables 

vi. The test statistic is t-distributed with N-2 
degrees of freedom:1 

2r-1

2-Nr
  t  

vii. To make a decision, compare the 
calculated t-statistic with the critical t-
statistic for the appropriate degrees of 
freedom and level of significance. 

 

                                                

1 We lose two degrees of freedom because we use the mean of each of the two variables in performing this test. 

Example 2, continued 

In the previous example,  

r = 0.475 

N = 10 

2

0.475 8 1.3435
t 1.5267

0.88
1 0.475
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Problem 
Suppose the correlation coefficient is 0.2 and the number of observations is 32.  What is the calculated test 
statistic?  Is this significant correlation using a 5% level of significance? 
 
Solution 
 
Hypotheses: 
H0:  = 0 

Ha:  

Calculated t-statistic: 
0.2 32-2 0.2 30

t = = =1.11803
1-0.04 0.96

 

Degrees of freedom = 32-2 = 30 

The critical t-value for a 5% level of significance and 30 degrees of freedom is 2.042.  Therefore, we conclude 

that there is no correlation (1.11803 falls between the two critical values of –2.042 and +2.042). 

 

Problem 
Suppose the correlation coefficient is 0.80 and the number of observations is 62.  What is the calculated test 
statistic?  Is this significant correlation using a 1% level of significance? 
 
Solution 
 
Hypotheses:  
H0:  = 0 

Ha: 

 

Calculated t-statistic: 
0.80 62 2 0.80 60 6.19677

t 10.32796
0.61 0.64 0.36

 

The critical t-value for a 1% level of significance and 61 observations is 2.665.  Therefore, we reject the null 

hypothesis and conclude that there is correlation. 

 

F. An outlier is an extreme value of a variable.  The outlier may be quite large or small 
(where large and small are defined relative to the rest of the sample). 

i. An outlier may affect the sample statistics, such as a correlation coefficient.  It is 
possible for an outlier to affect the result, for example, such that we conclude 
that there is a significant relation when in fact there is none or to conclude that 
there is no relation when in fact there is a relation. 

ii. The researcher must exercise judgment (and caution) when deciding whether to 
include or exclude an observation. 

G. Spurious correlation is the appearance of a relationship when in fact there is no 
relation.  Outliers may result in spurious correlation. 

i. The correlation coefficient does not indicate a causal relationship. Certain data 
items may be highly correlated, but not necessarily a result of a causal 
relationship.  

ii. A good example of a spurious correlation is snowfall and stock prices in January. 
If we regress historical stock prices on snowfall totals in Minnesota, we would get 
a statistically significant relationship – especially for the month of January. Since 
there is not an economic reason for this relationship, this would be an example 
of spurious correlation. 
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5 Correlation and Regression 

Simple regression 
1. Regression is the analysis of the relation between one variable and some other variable(s), 

assuming a linear relation.  Also referred to as least squares regression and ordinary least 
squares (OLS). 

A. The purpose is to explain the variation in a variable (that is, how a variable differs from 
it's mean value) using the variation in one or more other variables. 

B. Suppose we want to describe, explain, or predict why a variable differs from its mean.  
Let the ith observation on this variable be represented as Yi, and let n indicate the 

number of observations.   

The variation in Yi's (what we want to explain) is: 

Variation
of Y

 = 
N

2

i

i=1

y -y  = SSTotal 

C. The least squares principle is that the regression line is determined by minimizing the 
sum of the squares of the vertical distances between the actual Y values and the 
predicted values of Y. 

Y

X  

 

A line is fit through the XY points such that the sum of the squared residuals (that is, the 
sum of the squared the vertical distance between the observations and the line) is 
minimized. 

2. The variables in a regression relation consist of dependent and independent variables. 

A. The dependent variable is the variable whose variation is being explained by the other 
variable(s).  Also referred to as the explained variable, the endogenous variable, or 
the predicted variable. 

B. The independent variable is the variable whose variation is used to explain that of the 
dependent variable.  Also referred to as the explanatory variable, the exogenous 
variable, or the predicting variable. 

C. The parameters in a simple regression equation are the slope (b1) and the intercept (b0): 

yi = b0 + b1 xi + i 

where yi is the ith observation on the dependent variable, 

xi is the ith observation on the independent variable, 

b0 is the intercept. 
b1 is the slope coefficient, 

i   is the residual for the ith observation. 
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6 Correlation and Regression 
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D. The slope, b1, is the change in Y for a given one-
unit change in X. The slope can be positive, 
negative, or zero, calculated as: 

1N

)x(x

1N

)x)(xy(y

var(X)

Y)cov(X,
b

N

1i

2
i

N

1i

ii

1  

Suppose that: 

N

1i

i )x)(xy(y = 1,000 

N

1i

2
i )x(x = 450 

N= 30 

Then
 

1

1,000
34.4827629b̂ = = =2.2222

450 15.51724
29

 

 

E. The intercept, b0, is the line‟s intersection with the Y-axis at X=0. The intercept can be 
positive, negative, or zero.  The intercept is calculated as: 

0 1b̂ =y-b x  

Hint: Think of the regression line 
as the average of the relationship 
between the independent 
variable(s) and the dependent 
variable. The residual represents 
the distance an observed value of 
the dependent variables (i.e., Y) is 
away from the average relationship 
as depicted by the regression line. 

A short-cut formula for the slope coefficient: 

N N
N

i iNi i i 1 i 1
i ii 1

i 1
1 N 22 N

i
ii 1 N

2 i 1
i

i 1

x y
(y y)(x x)

x y
N

N 1b

(x x)
x

N 1 x
N

 

Whether this is truly a short-cut or not depends on the method of 
performing the calculations: by hand, using Microsoft Excel, or 
using a calculator. 
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3. Linear regression assumes the 
following: 

A. A linear relationship exists 
between dependent and 
independent variable.  
Note:  if the relation is not 
linear, it may be possible 
to transform one or both 
variables so that there is a 
linear relation. 

B. The independent variable 
is uncorrelated with the 
residuals; that is, the 
independent variable is 
not random. 

C. The expected value of the 
disturbance term is zero; 
that is, E( i)=0 

D. There is a constant variance of the disturbance term; that is, the disturbance or residual 
terms are all drawn from a distribution with an identical variance.  In other words, the 
disturbance terms are homoskedastistic. [A violation of this is referred to as 
heteroskedasticity.] 

E. The residuals are independently distributed; that is, the residual or disturbance for one 
observation is not correlated with that of another observation. [A violation of this is 
referred to as autocorrelation.] 

F. The disturbance term (a.k.a. residual, a.k.a. error term) is normally distributed. 

4. The standard error of the estimate, SEE,  (also referred to as the standard error of the 
residual or standard error of the regression, and often indicated as se) is the standard 
deviation of predicted dependent variable values about the estimated regression line. 

5. Standard error of the estimate (SEE) = se
2 = ResidualSS

N 2
 

SEE
2N

ε

2N

)y(y

2N

xbby
N

1i

2
i

2N

1i

ii

N

1i

2

ii0i
ˆˆˆˆ

 

where  SSResidual is the sum of squared errors; 
^ indicates the predicted or estimated value of the variable or parameter; 
and 

ŷ I =  i0 bb ˆˆ xi, is a point on the regression line corresponding to a value of the 

independent variable, the xi;  the expected value of y, given the estimated mean 

relation between x and y. 

Example 1, continued: 

Home sales prices (vertical axis) v. square footage for a sample 
of 34 home sales in September 2005 in St. Lucie County. 
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Example 2, continued 
 
Consider the following observations on X and Y: 
 

Observation X Y 

1 12 50 

2 13 54 

3 10 48 

4 9 47 

5 20 70 

6 7 20 

7 4 15 

8 22 40 

9 15 35 

10 23 37 

Sum 135 416 
 
The estimated regression line is: 
 

yi = 25.559 + 1.188 xi 

 

and the residuals are calculated as: 
 

Observation x y 
y  y- y  2 

1 12 50 39.82 10.18 103.68 

2 13 54 41.01 12.99 168.85 

3 10 48 37.44 10.56 111.49 

4 9 47 36.25 10.75 115.50 

5 20 70 49.32 20.68 427.51 

6 7 20 33.88 -13.88 192.55 

7 4 15 30.31 -15.31 234.45 

8 22 40 51.70 -11.70 136.89 

9 15 35 43.38 -8.38 70.26 

10 23 37 52.89 -15.89 252.44 

Total    0 1,813.63 
 
Therefore, 

SSResidaul = 1813.63 / 8 = 226.70 
SEE = 226.70 = 15.06 

 

A. The standard error of the estimate helps us gauge the "fit" of the regression line; that is, 
how well we have described the variation in the dependent variable. 

i. The smaller the standard error, the better the fit. 

ii. The standard error of the estimate is a measure of close the estimated values 
(using the estimated regression), the ŷ 's, are to the actual values, the Y's. 

iii. The i‟s (a.k.a. the disturbance terms; a.k.a. the residuals) are the vertical 

distance between the observed value of Y and that predicted by the equation, 
the ŷ 's. 

iv. The i‟s are in the same terms (unit of measure) as the Y‟s (e.g., dollars, pounds, 

billions) 

6. The coefficient of determination, R2, is the percentage of variation in the dependent variable 
(variation of Yi's or the sum of squares total, SST) explained by the independent variable(s). 
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A. The coefficient of determination is calculated as: 

R2=
 variationTotal

 variationExplained
 

= 
RegressionTotal Residual

Total Total

SSSS SSTotal variation  Unexplained  variation

Total variation SS SS
 

B. An R2 of 0.49 indicates that the independent variables explain 49% of the variation in 
the dependent variable. 

Example 2, continued 
 
Continuing the previous regression example, we can calculate the R2: 
 

Observation x y (y- y )2 ŷ  Y- ŷ  ( ŷ - y )2 2 

1 12 50 70.56 39.82 10.18 3.18 103.68 

2 13 54 153.76 41.01 12.99 0.35 168.85 

3 10 48 40.96 37.44 10.56 17.30 111.49 

4 9 47 29.16 36.25 10.75 28.59 115.50 

5 20 70 806.56 49.32 20.68 59.65 427.51 

6 7 20 466.56 33.88 -13.88 59.65 192.55 

7 4 15 707.56 30.31 -15.31 127.43 234.45 

8 22 40 2.56 51.70 -11.70 102.01 136.89 

9 15 35 43.56 43.38 -8.38 3.18 70.26 

10 23 37 21.16 52.89 -15.89 127.43 252.44 

Total  416 2,342.40 416.00 0.00 528.77 1,813.63 
 
R2  = 528.77 / 2,342.40 = 22.57% 
or 
R2 = 1 – (1,813.63 / 2,342.40) = 1 – 0.7743 = 22.57% 

 

7. A confidence interval is the range of regression coefficient values for a given value estimate of 
the coefficient and a given level of probability.  

A. The confidence interval for a regression coefficient 1b̂  is calculated as: 

1b̂c1 stb̂  

or 

11 b̂c11b̂c1 stb̂bstb̂  

where tc is the critical t-value for the selected confidence level.  If there are 30 degrees 
of freedom and a 95% confidence level, tc is 2.042 [taken from a t-table]. 

B. The interpretation of the confidence interval is that this is an interval that we believe will 

include the true parameter (
1b̂

s in the case above) with the specified level of confidence. 

8. As the standard error of the estimate (the variability of the data about the regression line) 
rises, the confidence widens. In other words, the more variable the data, the less confident you 
will be when you‟re using the regression model to estimate the coefficient. 
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9. The standard error of the coefficient is the square root of the ratio of the variance of the 
regression to the variation in the independent variable: 

n

1i

2
i

2
e

b

)x(x

s
s

1
ˆ  

A. Hypothesis testing: an individual explanatory variable  

i. To test the hypothesis of the slope coefficient (that is, to see whether the 
estimated slope is equal to a hypothesized value, b ,  Ho: b = b1, we calculate 

a t-distributed statistic: 

tb = 

1

1 1

b̂

b̂ -b

s
 

ii. The test statistic is t distributed with N k 1 degrees of freedom (number of 

observations (N), less the number of independent variables (k), less one). 

B. If the t statistic is greater than the critical t value for the appropriate degrees of 

freedom, (or less than the critical t value for 

a negative slope) we can say that the slope 
coefficient is different from the hypothesized 
value, b1.   

C. If there is no relation between the 
dependent and an independent variable, the 
slope coefficient, b1  would be zero. 
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 
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 
 
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X 

Y 

b0 

0 

b1 = 0 

 

 

 A zero slope indicates that there is no change in Y for a given change in X 
 A zero slope indicates that there is no relationship between Y and X. 

D. To test whether an independent variable explains the variation in the dependent variable, 
the hypothesis that is tested is whether the slope is zero: 

Ho: b1= 0 

versus the alternative (what you conclude if you reject the null, Ho): 

Ha: b1 =/  0 

This alternative hypothesis is referred to as a two-sided hypothesis.  This means that we 
reject the null if the observed slope is different from zero in either direction (positive or 
negative). 

E. There are hypotheses in economics that refer to the sign of the relation between the 
dependent and the independent variables.  In this case, the alternative is directional (> 

Note: The formula for the standard 
error of the coefficient has the variation 
of the independent variable in the 
denominator, not the variance.  The 
variance = variation / n-1. 
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or <) and the t-test is one-sided (uses only one tail of the t-distribution). In the case of a 
one-sided alternative, there is only one critical t-value. 

Example 3: Testing the significance of a slope coefficient 
 
Suppose the estimated slope coefficient is 0.78, the sample size is 26, the standard error of the 

coefficient is 0.32, and the level of significance is 5%.  Is the slope difference than zero? 

The calculated test statistic is: tb =

1

11 bb

b̂
s

ˆ
= 2.4375

0.32

00.78
 

The critical t-values are  2.060: 

 
              -2.060                               2.060 

____________|_____________________|__________ 
Reject H0                               Fail to reject H0                   Reject H0 

 
Therefore, we reject the null hypothesis, concluding that the slope is different from zero.   

 

10. Interpretation of coefficients.  

A. The estimated intercept is interpreted as the value of the dependent variable (the Y) if 
the independent variable (the X) takes on a value of zero. 

B. The estimated slope coefficient is interpreted as the change in the dependent variable for 
a given one-unit change in the independent variable. 

C. Any conclusions regarding the importance of an independent variable in explaining a 
dependent variable requires determining the statistical significance if the slope 
coefficient.  Simply looking at the magnitude of the slope coefficient does not address 
this issue of the importance of the variable. 

11. Forecasting is using regression involves making predictions about the dependent variable based 
on average relationships observed in the estimated regression. 

A. Predicted values are 
values of the 
dependent variable 
based on the estimated 
regression coefficients 
and a prediction about 
the values of the 
independent variables. 

B. For a simple regression, 
the value of Y is predicted as: 

Example 4 
Suppose you estimate a regression model with the following 
estimates: 

ŷ = 1.50 + 2.5 X1 

In addition, you have forecasted value for the independent variable, 
X1=20.  The forecasted value for y is 51.5: 

ŷ  = 1.50 + 2.50 (20) = 1.50 + 50 = 51.5 
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ŷ  = i0 bb ˆˆ xp 

where  ŷ  is the predicted value of the dependent variable, and 

 xp is the predicted value of the independent variable (input). 

12. An analysis of variance table (ANOVA table) table is a summary of the explanation of the 
variation in the dependent variable.  The basic form of the ANOVA table is as follows: 

 

Source of variation Degrees of 
freedom 

Sum of squares Mean square 

Regression (explained) 1 Sum of squares regression 

(SSRegression) 

Mean square regression = 

RegressionSS

1
 

Error (unexplained) N-2 Sum of squares residual 

(SSResidual) 
Mean square error = ResidualSS

N-2
 

Total N-1 Sum of squares total 

(SSTotal) 

 

 

Example 5 

Source of      Degrees of Sum of  Mean 
variation       freedom squares   square 

Regression (explained)    1 5050  5050 
Error (unexplained)  28   600  21.429 
Total    29 5650  
 

R2 = 
5,050

=0.8938 or 89.38%
5,650

 

SEE = 
600

 = 21.429 =4.629
28
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Multiple Regression 
1. Multiple regression is regression analysis with more than one independent variable. 

A. The concept of multiple regression is identical to that of simple regression analysis 
except that two or more independent variables are used simultaneously to explain 
variations in the dependent variable. 

y = b0 + b1x1 +  b2x2 +  b3x3 +  b4x4 

B. In a multiple regression, the goal is to 
minimize the sum of the squared errors.  
Each slope coefficient is estimated while 
holding the other variables constant. 

2. The intercept in the regression equation has the 
same interpretation as it did under the simple linear case – the intercept is the value of the 
dependent variable when all independent variables are equal zero.   

3. The slope coefficient is the parameter that reflects the change in the dependent variable for a 
one unit change in the independent variable. 

A. The slope coefficients (the betas) are 
described as the movement in the 
dependent variable for a one unit 
change in the independent variable – 
holding all other independent variables 
constant.  

B. For this reason, beta coefficients in a 
multiple linear regression are sometimes 
called partial betas or partial regression coefficients. 

4. Regression model: 

Yi = b0 + b1  x1i + b2 x2i + i 

where: 

b
j
 is the slope coefficient on the jth independent variable; and 

x
ji
 is the ith observation on the jth variable. 

A. The degrees of freedom for the test of a slope coefficient are N-k-1, where n is the 
number of observations in the sample and k is the number of independent variables. 

B. In multiple regression, the independent variables may be correlated with one another, 
resulting in less reliable estimates.  This problem is referred to as multicollinearity. 

5. A confidence interval for a population regression slope in a multiple regression is an interval 
centered on the estimated slope: 

ib̂cii
ib̂ci

ib̂ci

stb̂bstb̂

or

stb̂

 

A. This is the same interval using in simple regression for the interval of a slope coefficient. 

B. If this interval contains zero, we conclude that the slope is not statistically different from 
zero. 

6. The assumptions of the multiple regression model are as follows: 

We do not represent the multiple 
regression graphically because it would 
require graphs that are in more than two 
dimensions. 

A slope by any other name … 

 The slope coefficient is the elasticity of 
the dependent variable with respect to 
the independent variable. 

 In other words, it‟s the first derivative of 
the dependent variable with respect to 
the independent variable. 
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A. A linear relationship exists between dependent and independent variables.   

B. The independent variables are uncorrelated with the residuals; that is, the independent 
variable is not random.  In addition, there is no exact linear relation between two or 
more independent variables. [Note: this is modified slightly from the assumptions of the 
simple regression model.] 

C. The expected value of the disturbance term is zero; that is, E( i)=0 

D. There is a constant variance of the disturbance term;  that is, the disturbance or residual 
terms are all drawn from a distribution with an identical variance.  In other words, the 
disturbance terms are homoskedastistic. [A violation of this is referred to as 
heteroskedasticity.] 

E. The residuals are independently distributed; that is, the residual or disturbance for one 
observation is not correlated with that of another observation. [A violation of this is 
referred to as autocorrelation.] 

F. The disturbance term (a.k.a. residual, a.k.a. error term) is normally distributed. 

G. The residual (a.k.a. disturbance term, a.k.a. error term) is what is not explained by the 
independent variables. 

7. In a regression with two independent variables, the residual for the ith observation is: 

i =Yi – ( 0b̂  + 1b̂ x1i + 2b̂  x2i) 

8. The standard error of the estimate (SEE) is the standard error of the residual: 

se = 
1kN

SSE

1kN

ε

SEE

N

1t

2
t

ˆ

 

9. The degrees of freedom, df, are calculated as: 

 

1)(kN1kN1
st variableindependen

ofnumber 

nsobservatio

ofnumber 
df  

A. The degrees of freedom are the number of independent pieces of information that are 
used to estimate the regression parameters.  In calculating the regression parameters, 
we use the following pieces of information: 

 The mean of the dependent variable. 

 The mean of each of the independent variables. 

B. Therefore,  

 if the regression is a simple regression, we use the two degrees of freedom in 
estimating the regression line. 

 if the regression is a multiple regression with four independent variables, we use five 
degrees of freedom in the estimation of the regression line. 

 

Example 6: Using analysis of variance 
information 

Suppose we estimate a multiple regression model 
that has five independent variables using a sample 
of 65 observations.  If the sum of squared residuals 
is 789, what is the standard error of the estimate? 
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10. Forecasting is using regression involves 
making predictions about the dependent 
variable based on average relationships 
observed in the estimated regression. 

A. Predicted values are values of 
the dependent variable based on 
the estimated regression 
coefficients and a prediction 
about the values of the 
independent variables. 

B. For a simple regression, the value of y is predicted as: 

22110 xbxbby ˆˆˆˆˆˆ  

where   
ŷ  is the predicted value of the dependent variable,  

ib̂  is the estimated parameter, and 

ix̂  is the predicted value of the independent variable  

C. The better the fit of the regression 
(that is, the smaller is SEE), the more 
confident we are in our predictions. 

 

 

Example 7:  Calculating a forecasted value 

 

Suppose you estimate a regression model with the following estimates: 

 Ŷ = 1.50 + 2.5 X1  0.2 X2 + 1.25 X3 

In addition, you have forecasted values for the independent variables: 

 X1=20  X2=120  X3=50 

What is the forecasted value of y? 

 

Solution 

The forecasted value for Y is 90: 

 Ŷ = 1.50 + 2.50 (20)  0.20 (120) + 1.25 (50) 

  =  1.50 + 50  24 + 62.50 = 90 

11. The F-statistic is a measure of how well a set of independent variables, as a group, explain the 
variation in the dependent variable. 

A. The F-statistic is calculated as: 

N 2
iRegression

i 1

N 2
Residual i

i 1

ˆ(y y)SS
kMean squared regression MSR kF

SSMean squared error MSE ˆ(y y)
N-k-1 N k 1

 

Solution 

Given: 

SSResidual = 789 

N = 65 

k = 5 

SEE = 
789 789

= =13.373
65-5-1 59

 

Caution: The estimated intercept and 
all the estimated slopes are used in the 
prediction of the dependent variable 
value, even if a slope is not statistically 
significantly different from zero. 
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B. The F statistic can be formulated to test all independent variables as a group (the most 

common application).  For example, if there are four independent variables in the model, 
the hypotheses are: 

H0: 0bbbb 4321  

Ha: at least one bi  0 

C. The F-statistic can be formulated to test subsets of independent variables (to see 
whether they have incremental explanatory power).  For example if there are four 
independent variables in the model, a subset could be examined: 

H0: 1 4b =b =0  

Ha: b1 or b4  0 

12. The coefficient of determination, R2, is the percentage of variation in the dependent variable 
explained by the independent variables. 

R2 = 
 variationTotal

 variationExplained
= 

Total Unexplained
- 

variation variation

Total variation
 

R2 = 

N
2

i 1

N
2

i 1

ˆ(y y)

(y y)

 

A. By construction, R2 ranges from 0 to 1.0 

B. The adjusted-R2 is an alternative to R2: 

)( 22 R1
kN

1N
1R  

i. The adjusted R2 is less than or equal to R2 („equal to‟ only when k=1).   

ii. Adding independent variables to the model will increase R2.  Adding independent 
variables to the model may increase or decrease the adjusted-R2 (Note: 
adjusted-R2 can even be negative). 

iii. The adjusted R2 does not have the “clean” explanation of explanatory power that 
the R2 has. 

13. The purpose of the Analysis of Variance (ANOVA) table is to attribute the total variation of the 
dependent variable to the regression model (the regression source in column 1) and the residuals 
(the error source from column 1). 

A. SSTotal is the total variation of Y about its mean or average value (a.k.a. total sum of 
squares) and is computed as: 

n
2

Total i

i=1

SS  = (y -y)  

where y  is the mean of Y. 

B. SSResidual (a.k.a. SSE) is the variability that is unexplained by the regression and is 
computed as: 

0 < R
2 

< 1 
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n
2

Residual i i i

i=1

ˆˆSS =SSE= (y -y ) = ε  

where is Ŷ  the value of the dependent variable using the regression equation.  

C. SSRegression (a.k.a. SSExplained) is the variability that is explained by the regression equation 
and is computed as SSTotal – SSResidual. 

N
2

Regression i

i=1

ˆSS = (y -y)  

D. MSE is the mean square error, or MSE = SSResidual / (N – k - 1) where k is the number of 
independent variables in the regression. 

E. MSR is the mean square regression, MSR =SSRegression / k 

Analysis of Variance Table (ANOVA) 

 

Source 

df 

(Degrees of 
Freedom) 

SS 

(Sum of 
Squares) 

Mean  

Square 

(SS/df) 

Regression k  SSRegression MSR 

Error N-k-1 SSResidual MSE 

Total N-1 SSTotal  

Regression2 Residual

Total Total

SS SS
R = =1-

SS SS

MSR
F=

MSE

 

14. Dummy variables are qualitative variables that take on a value of zero or one. 

A. Most independent variables represent a continuous flow of values. However, sometimes 
the independent variable is of a binary nature (it‟s either ON or OFF).   

B. These types of variables are called dummy variables and the data is assigned a value of 
"0" or "1".  In many cases, you apply the dummy variable concept to quantify the impact 
of a qualitative variable.  A dummy variable is a dichotomous variable; that is, it takes 
on a value of one or zero. 

C. Use one dummy variable less than the number of classes (e.g., if have three classes, use 
two dummy variables), otherwise you fall into the dummy variable "trap" (perfect 
multicollinearity – violating assumption [2]). 

D. An interactive dummy variable is a dummy variable (0,1) multiplied by a variable to 
create a new variable.  The slope on this new variable tells us the incremental slope.  

15. Heteroskedasticity is the situation in which the variance of the residuals is not constant across 
all observations.   

A. An assumption of the regression methodology is that the sample is drawn from the same 
population, and that the variance of residuals is constant across observations;  in other 
words, the residuals are homoskedastic. 
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B. Heteroskedasticity is a problem because the estimators do not have the smallest possible 
variance, and therefore the standard errors of the coefficients would not be correct. 

16. Autocorrelation is the situation in which the residual terms are correlated with one another.  
This occurs frequently in time-series analysis. 

A. Autocorrelation usually appears in time series data.  If last year‟s earnings were high, this 
means that this year‟s earnings may have a greater probability of being high than being 
low.  This is an example of positive autocorrelation.  When a good year is always 
followed by a bad year, this is negative autocorrelation. 

B. Autocorrelation is a problem because the estimators do not have the smallest possible 
variance and therefore the standard errors of the coefficients would not be correct. 

17. Multicollinearity is the problem of high correlation between or among two or more 
independent variables.  

A. Multicollinearity is a problem because 

i. The presence of multicollinearity can cause distortions in the standard error and 
may lead to problems with significance testing of individual coefficients, and 

ii. Estimates are sensitive to changes in the sample observations or the model 
specification. 

B. If there is multicollinearity, we are more likely to conclude a variable is not important. 

C. Multicollinearity is likely present to some degree in most economic models.  Perfect 
multicollinearity would prohibit us from estimating the regression parameters.  The 
issue then is really a one of degree. 

18. The economic meaning of the results of a regression estimation focuses primarily on the slope 
coefficients.   
A. The slope coefficients indicate the change in the dependent variable for a one-unit 

change in the independent variable.  This slope can than be interpreted as an elasticity 
measure; that is, the change in one variable corresponding to a change in another 
variable. 

B. It is possible to have statistical significance, yet not have economic significance (e.g., 
significant abnormal returns associated with an announcement, but these returns are not 
sufficient to cover transactions costs). 
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To… use… 

test the role of a single variable in explaining the variation 
in the dependent variable 

the t-statistic. 

test the role of all variables in explaining the variation in the 
dependent variable 

the F-statistic. 

estimate the change in the dependent variable for a one-
unit change in the independent variable 

the slope coefficient. 

estimate the dependent variable if all of the independent 
variables take on a value of zero 

the intercept. 

estimate the percentage of the dependent variable‟s 
variation explained by the independent variables 

the R2. 

forecast the value of the dependent variable given the 
estimated values of the independent variable(s) 

the regression equation, 
substituting the estimated values 
of the independent variable(s) in 
the equation. 
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Regression terminology 
 

Analysis of variance 

ANOVA 

Autocorrelation 

Coefficient of determination 

Confidence interval 

Correlation coefficient 

Covariance 

Covariation 

Cross-sectional 

Degrees of freedom 

Dependent variable 

Explained variable 

Explanatory variable 

Forecast 

F-statistic 

Heteroskedasticity 

Homoskedasticity 

Independent variable 

Intercept 

Least squares regression 

Mean square error 

Mean square regression 

Multicollinearity 

Multiple regression 

Negative correlation 

Ordinary least squares 

Perfect negative correlation 

Perfect positive correlation 

Positive correlation 

Predicted value 

R2 

Regression 

Residual 

Scatterplot 

se 

SEE 

Simple regression 

Slope 

Slope coefficient 

Spurious correlation 

SSResidual 

SSRegression 

SSTotal 

Standard error of the estimate 

Sum of squares error 

Sum of squares regression 

Sum of squares total 

Time-series 

t-statistic 

Variance 

Variation 
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Regression formulas 

 

Variances 

N

1i

2
xxVariation   

1N

N

1i

2
xx

Variance   

N

i i

i 1

(x -x)(y -y)

Covariance  
N-1

 

 

Correlation 

1N

)y(y

1N

)x(x

)y(y)x(x

r
N

1i

2
i

N

n1,i

i

N

1i

2
i

2
i

1N
 

2r-1

2-Nr
  t  

 

Regression 
yi = b0 + b1 xi + i     y = b0 + b1x1 +  b2x2 +  b3x3 +  b4x4 + i 

1N

)x(x

1N

)x)(xy(y

var(X)

Y)cov(X,
b

N

1i

2
i

N

1i

ii

1   0 1b̂ =y-b x  

 

Tests and confidence intervals 

se 
2N

ε

2N

)y(y

2N

xbby
N

1i

2
i

2N

1i

ii

N

1i

2

ii0i
ˆˆˆˆ

 

n

1i

2
i

2
e

b

)x(x

s
s

1
ˆ  

tb = 
1

1 1

b̂

b̂ -b

s
  

N 2
iRegression

i 1

N 2
Residual i

i 1

ˆ(y y)SS
kMean squared regression MSR kF

SSMean squared error MSE ˆ(y y)
N-k-1 N k 1
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Forecasting 

0 i 1p i 2p i 3p i Kp
ˆ ˆ ˆ ˆ ˆŷ=b +b x +b x +b x +...+b x  

 

Analysis of Variance 
n

2
Total i

i=1

SS  = (y -y)  
n

2
Residual i i i

i=1

ˆˆSS =SSE= (y -y ) = ε  
N

2
Regression i

i=1

ˆSS = (y -y)  

N
2

Regression2 Residual i 1

N
Total Total 2

i 1

ˆ(y y)
SS SS

R = =1-
SS SS

(y y)

  

N 2
iRegression

i 1

N 2
Residual i

i 1

ˆ(y y)SS
kMean squared regression MSR kF

SSMean squared error MSE ˆ(y y)
N-k-1 N k 1

 


