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ABSTRACT

This Paper is dedicated to the comparative anabfdParametric and Non-
Parametric hypothesis testing. Here we discuss spamametric tests such as
Student t-test, Z-test, chi-square, ANOVA (Analysi$ variance) and Non-
Parametric tests such as Sign test, Wilcoxon SigmkRTest and Mann-Whitney
Test. And after analysis we can say that if theimggions do not meet correctly
then the parametric tests do not gives the righickesion. Whereas, in the same
case the Non-parametric tests gives the right csiahs. However, if normality
assumptions meet then the parametric tests are mffi@ent than the non-
parametric tests.
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INTRODUCTION

A statistical test provides a mechanism for maldgpgntitative decisions about a
process or processes. The intent is to determimthshthere is enough evidence to "reject"”
a conjecture or hypothesis about the process. dhgcture is called the null hypothesis.
Not rejecting may be a good result if we want tatowe to act as if we "believe" the null
hypothesis is true. Or it may be a disappointingulte possibly indicating we may not yet
have enough data to "prove" something by rejedtieghull hypothesis.

Hypothesis tests also address the uncertainty efsimple estimate. However,
instead of providing an interval, a hypothesis ttmpts to refute a specific claim about a
population parameter based on the sample datacdlsisive have Two types of Tests based
parameters i.e. Parametric and Non-Parametric.hpethesis tests lie in the category of
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parametric tests when they assume the populatitowi® some specific distribution such as

normal distribution with a set of parameters. Naapgetric tests, on the other hand, are
applied when certain assumptions cannot be madg &t population. Rank or ordinal data

usually require nonparametric analysis. Nonpardmtgsts are also referred as distribution-
free methods. Since nonparametric tests make fagsmmptions, they are more robust than
their corresponding parametric ones. Non-parametddels differ from parametric models

in that the model structure is not specified amptot is instead determined from data. The
term non-parametric is not meant to imply that soncfdels completely lack parameters but
that the number and nature of the parametersexiblit and not fixed in advance.

PARAMETRIC TEST

Parametric tests are more robust and for the nmerstrequire less data to make a
stronger conclusion than nonparametric tests. Hewedo use a parametric test, 3 parameters
of the data must be true or are assumed. Firstjateeneed to be normally distributed, which
means all data points must follow a bell-shapedrewithout any data skewed above or
below the mean. Ca-125 levels are an example ofnoomally distributed data. In the
general population, normal Ca-125 values range ffdm40. The median is 15, which leads
to a skewed rather than a normal distribution. d&e also need to have equal variance and
have the same standard deviation. Finally, the dagal to be continuous. Commonly used
parametric tests are described below.

A. Student t-Test

The Student t-test is probably the most widely ysm@émetric test. It was developed
by a statistician working at the Guinness breweny s called the Student t-test because of
proprietary rights. A single sample t-test is usedetermine whether the mean of a sample
is different from a known average. A 2-sample t-iesised to establish whether a difference
occurs between the means of 2 similar data setst-Tédst uses the mean, standard deviation,
and number of samples to calculate the test statlst a data set with a large number of
samples, the critical value for the Student t-tegt.96 for an alpha of 0.05, obtained from a
t-test table. The calculation to determine thelt@as relatively simple, but it can be found
easily on-line or in any elementary statistics hosk an example, given 1000 men measured
for height in China and Japan, are the mean hedifiesent? China’s mean is 169.1 cm with
a standard deviation of 6.21 cm, and Japan’s medghhis 168.6 cm with a standard
deviation of 5.7 6cm. The t-value is 1.88; therefahe mean heights are not statistically
different.

B. Thez-Test

The next test, which is very similar to the Studetsst, is the z-test. However, with
the z-test, the variance of the standard populatather than the standard deviation of the
study groups, is used to obtain the z-test statikising the z-chart, like the t-table, we see
what percentage of the standard population is deitfie mean of the sample population. If,
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like the t-test, greater than 95% of the standaxglufation is on one side of the mean, the p-
value is less than 0.05 and statistical signifieaiscachieved. As some assumption of sample
size exists in the calculation of the z-test, idld not be used if sample size is less than 30.
If both the n and the standard deviation of bothups are known, a two sample t-test is best.

C. Chi-square

A chi-square test can be used to test if the vadasf a population is equal to a
specified value. This test can be either a twoekist or a one-sided test. The two-sided
version tests against the alternative that thevanance is either less than or greater than the
specified value. The one-sided version only tastsnie direction. The choice of a two-sided
or one-sided test is determined by the problem.example, if we are testing a new process,
we may only be concerned if its variability is geFathan the variability of the current
process.

D. ANOVA

Analysis of Variance (ANOVA) is a statistical methased to test differences
between two or more means. It may seem odd thatettnique is called “Analysis of
Variance” rather than “Analysis of Means.” As yoillwee, the name is appropriate because
inferences about means are made by analyzing &tiadon-specific null hypothesis is
sometimes called the omnibus null hypothesis. Wtheromnibus null hypothesis is rejected,
the conclusion is that at least one population nigalifferent from at least one other mean.
However, since the ANOVA does not reveal which nseare different from which, it offers
less specific information than the Tukey HSD t&ste Tukey HSD is therefore preferable to
ANOVA in this situation. Some textbooks introdube fTukey test only as a follow-up to an
ANOVA. However, there is no logical or statisticahson why you should not use the Tukey
test even if you do not compute an ANOVA. You migktwondering why you should learn
about ANOVA when the Tukey test is better. One @eads that there are complex types of
analyses that can be done with ANOVA and not wit Tukey test. A second is that
ANOVA is by far the most commonly-used technique tmmparing means, and it is
important to understand ANOVA in order to underdtagsearch reports.

Analysis of variance (ANOVA) is a test that incorgtes means and variances to
determine the test statistic. The test statisttbén used to determine whether groups of data
are the same or different. When hypothesis tesihging performed with ANOVA, the null
hypothesis is stated such that all groups areahmesThe test statistic for ANOVA is called
the F-ratio.

NON-PARAMETRIC TEST

Non-parametric covers techniques that do not rely data belonging to any
particular distribution. These include, among ashélistribution free methods, which do not
rely on assumptions that the data are drawn frajiven probability distribution. As such it
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is the opposite of parametric statistics. It inelsichon-parametric descriptive statistics,
statistical models, inference and statistical tdst®ther words, non-parametric tests can be
referred to be a function on a sample that has ependency on a parameter, whose
interpretation does not depend on the populatitiimdi any parameterized distributions. In
hypothesis testing, non-parametric tests play dralenole for statisticians and decision
makers. Among various noteworthy researcherssttati hypotheses concern the behaviour
of observable random variables. For example, thpotimesis (a) that a normal distribution
has a specified mean and variance is statisticals she hypothesis (b) that it has a given
mean but unspecified variance; so is the hypothe¥ithat a distribution is of normal form
with both mean and variance unspecified; finallg, is the hypothesis (d) that two
unspecified continuous distributions are identickbllowing are some non-identical
methods.

A. Sign Test

Nonparametric testing is used in case of withoubwdrdge about sample
distribution; concretely, there is no assumptiomafmality. The sign test can be used to test
the hypothesis that there is "no difference in raesll between the continuous distributions
of two random variables X and Y, in the situationem we can draw paired samples from X
and Y. It is a non-parametric test which makes ¥ewy assumptions about the nature of the
distributions under test this means that it hay \mmeral applicability but may lack the
statistical power of other tests such as the paiegdples t-test or the Wilcoxon signed-rank
test. The nonparametric testing begins with thé eessample median. If distribution is
symmetric, median is identical to mean. Given theglian is the data point at which the left
side data and the right side data are of equalnagiatte probability.

POD<)=P(D>)=05

If data is not large and there is no assumptionulmmrmality, the median is
approximate to population mean. Given null hypohef: = and alternative hypothesis:H
the test so-called sign test is performed as beteps:

Step 1. Assigning plus signs to sample data points whedeeg are greater than and minus
signs to ones whose values are less than . Notevdhges which equal are not considered.
Plus signs and minus signs represent the rightagiddeft side of , respectively.

Step 2: If the number of plus signs is nearly equal to nlnenber of minus signs, then null
hypothesis Klis true; otherwise His false. In other words, that the proportion hfspsigns
is significantly different from 0.5 cause to rejagtH, in flavour of H.

B. Wilcoxon Sign-Rank Test

As we have noticed in section previous sectiona? $ign test focuses on whether or
not the observations are different from null hymsis but it does not consider the magnitude
of such difference. The Wilcoxon signed-rank teshinon-parametric statistical hypothesis
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test used when comparing two related samples, matsamples, or repeated measurements
on a single sample to assess whether their tésst tfor matched pairs, or the t-test for
dependent samples when the population cannot henaslsto be normally distributed, we
refer Lowry for more details. The test is namedFoank Wilcoxon (1892-1965) who, in a
single paper, proposed both it and the rank-sutrfaeswo independent samples. For more
details we refer Wilcoxon. The test was popularibgdiegel in his influential text book on
nonparametric statistics. Siegel used the symb&brTthe value defined below as W. In
consequence, the test is sometimes referred teed&/ilcoxon T test, and the test statistic is
reported as a value of T. Other names may incloeétttest for matched pairs” or the "t-test
for dependent samples". Walpole et al examined Wiitoxon signed-rank test based on
assumption of symmetric and continuous distributbamsiders both difference and how
much difference is. The median is identical to timean u according to symmetric
assumption. It includes four following steps:

Step 1. Calculating all deviations between data points gjdve haveD = {d;, t,..., d}
whered; = x; — o anddi # 0. Note that data poing is instance of random variab¥e

Step 2. Assigning a rank; to each deviatiom, without regard to sign, for instance, rank
valuel and rank value to be assigned to smallest and largdssblute deviation (without
sign), respectively. If two or more absolute ddeiag have the same value, these deviations
are assigned by average rank. For examplé® i#3 and %' deviations get the same value,
they receive the same rar@+@d+5) / 3 = 4. We have a set of ranks={ry, ry,..., } where

ri is the rank ofi,.

Step 3. Letw’ andw be the sum of ranks whose corresponding deviatoagositive and
negative, respectively. We hawé =Y, .07 andw =340 7; andw = min(w" , w). Note
thatw is the minimum value betweevi andw

Step 4. In flavor of Hy: p < po, Ho is rejected ifw” is sufficiently small. In flavour oH;: p >
Lo, Ho is rejected ifw is sufficiently small. In case of two-sided tékt u #uo, Ho is rejected
if w is sufficiently small. The concept sufficiently sines defined via thresholds or pre
computed critical values. The valwé, w or w is sufficiently small if it is smaller than a
certain critical value with respect to significdenel o.

C. Mann-Whitney Test

Use this when two different groups of participapésform both conditions of your
study: i.e., it is appropriate for analysing théadfiom an independent-measures design with
two conditions. Use it when the data do not meetréguirements for a parametric test (i.e. if
the data are not normally distributed; if the vaces for the two conditions are markedly
different; or if the data are measurements on dmat scale). Otherwise, if the data meet the
requirements for a parametric test, it is betteuse an independent-measures t-test (also
known as a "two-sample" t-test). The logic behimel Mann-Whitney test is to rank the data
for each condition, and then see how differentttierank totals are. If there is a systematic
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difference between the two conditions, then mosthef high ranks will belong to one
condition and most of the low ranks will belongthe other one. As a result, the rank totals
will be quite different. On the other hand, if ttveo conditions are similar, then high and low
ranks will be distributed fairly evenly between ti conditions and the rank totals will be
fairly similar. The Mann-Whitney test statistic "Wéflects the difference between the two
rank totals. The SMALLER it is (taking into accoumbw many participants you have in
each group) then the less likely it is to have owaliby chance. A table of critical values of
U shows you how likely it is to obtain your parti@uvalue of U purely by chance. Note that
the Mann-Whitney test is unusual in this respectmally, the BIGGER the test statistic, the
less likely it is to have occurred by chance).

CONCLUSION

Parametric and nonparametric are two broad claasiifins of statistical procedures.
Parametric tests are based on assumptions abadisthibution of the underlying population
from which the sample was taken. The most commoampetric assumption is that data are
approximately normally distributed. Non-parametdsts do not rely on assumptions about
the shape or parameters of the underlying populatistribution. If the data deviate strongly
from the assumptions of a parametric procedureguitie parametric procedure could lead
to incorrect conclusions. You should be aware & #ssumptions associated with a
parametric procedure and should learn methodsatuate the validity of those assumptions.
If you determine that the assumptions of the patdmerocedure are not valid, use an
analogous nonparametric procedure instead. Theme#ia assumption of normality is
particularly worrisome for small sample sizes (BG. Nonparametric tests are often a good
option for these data. It can be difficult to decidhether to use a parametric or non-
parametric procedure in some cases. Nonparametwegures generally have less power for
the same sample size than the corresponding paranpebcedure if the data truly are
normal. Interpretation of nonparametric proceducas also be more difficult than for
parametric procedures. Non-parametric model isdffggent than parametric model because
it lacks valuable information under sample whehais no knowledge about the distribution.
All properties of distribution such as mean, vac@nstandard deviation, median, mode,
skewness, kurtosis, etc are essential informatiavhach nonparametric model does not take
advantages.
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