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ABSTRACT 

This Paper is dedicated to the comparative analysis of Parametric and Non-
Parametric hypothesis testing. Here we discuss some parametric tests such as 
Student t-test, Z-test, chi-square, ANOVA (Analysis of variance) and Non-
Parametric tests such as Sign test, Wilcoxon Sign-Rank Test and Mann-Whitney 
Test. And after analysis we can say that if the assumptions do not meet correctly 
then the parametric tests do not gives the right conclusion. Whereas, in the same 
case the Non-parametric tests gives the right conclusions. However, if normality 
assumptions meet then the parametric tests are more efficient than the non-
parametric tests. 
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INTRODUCTION 

 
A statistical test provides a mechanism for making quantitative decisions about a 

process or processes. The intent is to determine whether there is enough evidence to "reject" 
a conjecture or hypothesis about the process. The conjecture is called the null hypothesis. 
Not rejecting may be a good result if we want to continue to act as if we "believe" the null 
hypothesis is true. Or it may be a disappointing result, possibly indicating we may not yet 
have enough data to "prove" something by rejecting the null hypothesis. 

Hypothesis tests also address the uncertainty of the sample estimate. However, 
instead of providing an interval, a hypothesis test attempts to refute a specific claim about a 
population parameter based on the sample data. Basically we have Two types of Tests based 
parameters i.e. Parametric and Non-Parametric. The hypothesis tests lie in the category of 
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parametric tests when they assume the population follows some specific distribution such as 
normal distribution with a set of parameters. Nonparametric tests, on the other hand, are 
applied when certain assumptions cannot be made about the population. Rank or ordinal data 
usually require nonparametric analysis. Nonparametric tests are also referred as distribution-
free methods. Since nonparametric tests make fewer assumptions, they are more robust than 
their corresponding parametric ones. Non-parametric models differ from parametric models 
in that the model structure is not specified a priori but is instead determined from data. The 
term non-parametric is not meant to imply that such models completely lack parameters but 
that the number and nature of the parameters are flexible and not fixed in advance. 
 

PARAMETRIC TEST 
 

Parametric tests are more robust and for the most part require less data to make a 
stronger conclusion than nonparametric tests. However, to use a parametric test, 3 parameters 
of the data must be true or are assumed. First, the data need to be normally distributed, which 
means all data points must follow a bell-shaped curve without any data skewed above or 
below the mean. Ca-125 levels are an example of non-normally distributed data. In the 
general population, normal Ca-125 values range from 0 to 40. The median is 15, which leads 
to a skewed rather than a normal distribution. The data also need to have equal variance and 
have the same standard deviation. Finally, the data need to be continuous. Commonly used 
parametric tests are described below. 
 

A.  Student t-Test 
 

The Student t-test is probably the most widely used parametric test. It was developed 
by a statistician working at the Guinness brewery and is called the Student t-test because of 
proprietary rights. A single sample t-test is used to determine whether the mean of a sample 
is different from a known average. A 2-sample t-test is used to establish whether a difference 
occurs between the means of 2 similar data sets. The t-test uses the mean, standard deviation, 
and number of samples to calculate the test statistic. In a data set with a large number of 
samples, the critical value for the Student t-test is 1.96 for an alpha of 0.05, obtained from a 
t-test table. The calculation to determine the t-value is relatively simple, but it can be found 
easily on-line or in any elementary statistics book. As an example, given 1000 men measured 
for height in China and Japan, are the mean heights different? China’s mean is 169.1 cm with 
a standard deviation of 6.21 cm, and Japan’s mean height is 168.6 cm with a standard 
deviation of 5.7 6cm. The t-value is 1.88; therefore, the mean heights are not statistically 
different. 
 

B. The z-Test 
 

The next test, which is very similar to the Student t-test, is the z-test. However, with 
the z-test, the variance of the standard population, rather than the standard deviation of the 
study groups, is used to obtain the z-test statistic. Using the z-chart, like the t-table, we see 
what percentage of the standard population is outside the mean of the sample population. If, 
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like the t-test, greater than 95% of the standard population is on one side of the mean, the p-
value is less than 0.05 and statistical significance is achieved. As some assumption of sample 
size exists in the calculation of the z-test, it should not be used if sample size is less than 30. 
If both the n and the standard deviation of both groups are known, a two sample t-test is best. 
 

C.  Chi-square 
 

A chi-square test can be used to test if the variance of a population is equal to a 
specified value. This test can be either a two-sided test or a one-sided test. The two-sided 
version tests against the alternative that the true variance is either less than or greater than the 
specified value. The one-sided version only tests in one direction. The choice of a two-sided 
or one-sided test is determined by the problem. For example, if we are testing a new process, 
we may only be concerned if its variability is greater than the variability of the current 
process. 
 
D.  ANOVA  
 

Analysis of Variance (ANOVA) is a statistical method used to test differences 
between two or more means. It may seem odd that the technique is called “Analysis of 
Variance” rather than “Analysis of Means.” As you will see, the name is appropriate because 
inferences about means are made by analyzing variance. Non-specific null hypothesis is 
sometimes called the omnibus null hypothesis. When the omnibus null hypothesis is rejected, 
the conclusion is that at least one population mean is different from at least one other mean. 
However, since the ANOVA does not reveal which means are different from which, it offers 
less specific information than the Tukey HSD test. The Tukey HSD is therefore preferable to 
ANOVA in this situation. Some textbooks introduce the Tukey test only as a follow-up to an 
ANOVA. However, there is no logical or statistical reason why you should not use the Tukey 
test even if you do not compute an ANOVA. You might be wondering why you should learn 
about ANOVA when the Tukey test is better. One reason is that there are complex types of 
analyses that can be done with ANOVA and not with the Tukey test. A second is that 
ANOVA is by far the most commonly-used technique for comparing means, and it is 
important to understand ANOVA in order to understand research reports. 

Analysis of variance (ANOVA) is a test that incorporates means and variances to 
determine the test statistic. The test statistic is then used to determine whether groups of data 
are the same or different. When hypothesis testing is being performed with ANOVA, the null 
hypothesis is stated such that all groups are the same. The test statistic for ANOVA is called 
the F-ratio.  
 
NON-PARAMETRIC TEST 
 

Non-parametric covers techniques that do not rely on data belonging to any 
particular distribution. These include, among others: distribution free methods, which do not 
rely on assumptions that the data are drawn from a given probability distribution. As such it 
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is the opposite of parametric statistics. It includes non-parametric descriptive statistics, 
statistical models, inference and statistical tests. In other words, non-parametric tests can be 
referred to be a function on a sample that has no dependency on a parameter, whose 
interpretation does not depend on the population fitting any parameterized distributions. In 
hypothesis testing, non-parametric tests play a central role for statisticians and decision 
makers. Among various noteworthy researchers, statistical hypotheses concern the behaviour 
of observable random variables. For example, the hypothesis (a) that a normal distribution 
has a specified mean and variance is statistical; so is the hypothesis (b) that it has a given 
mean but unspecified variance; so is the hypothesis (c) that a distribution is of normal form 
with both mean and variance unspecified; finally, so is the hypothesis (d) that two 
unspecified continuous distributions are identical. Following are some non-identical 
methods. 
 

A.  Sign Test 
 

Nonparametric testing is used in case of without knowledge about sample 
distribution; concretely, there is no assumption of normality. The sign test can be used to test 
the hypothesis that there is "no difference in medians" between the continuous distributions 
of two random variables X and Y, in the situation when we can draw paired samples from X 
and Y. It is a non-parametric test which makes very few assumptions about the nature of the 
distributions under test this means that it has very general applicability but may lack the 
statistical power of other tests such as the paired samples t-test or the Wilcoxon signed-rank 
test. The nonparametric testing begins with the test on sample median. If distribution is 
symmetric, median is identical to mean. Given the median is the data point at which the left 
side data and the right side data are of equal accumulate probability.  
 

P(D < ) = P(D > ) = 0.5 
 

If data is not large and there is no assumption about normality, the median is 
approximate to population mean. Given null hypothesis H0: = and alternative hypothesis H1:, 
the test so-called sign test is performed as below steps: 
 

Step 1: Assigning plus signs to sample data points whose values are greater than and minus 
signs to ones whose values are less than . Note that values which equal are not considered. 
Plus signs and minus signs represent the right side and left side of , respectively. 
 

Step 2: If the number of plus signs is nearly equal to the number of minus signs, then null 
hypothesis H0 is true; otherwise H1 is false. In other words, that the proportion of plus signs 
is significantly different from 0.5 cause to rejecting H0 in flavour of H1. 
 

B.  Wilcoxon Sign-Rank Test  
 

As we have noticed in section previous section-2 that sign test focuses on whether or 
not the observations are different from null hypothesis but it does not consider the magnitude 
of such difference. The Wilcoxon signed-rank test is a non-parametric statistical hypothesis 
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test used when comparing two related samples, matched samples, or repeated measurements 
on a single sample to assess whether their test, t-test for matched pairs, or the t-test for 
dependent samples when the population cannot be assumed to be normally distributed, we 
refer Lowry for more details. The test is named for Frank Wilcoxon (1892–1965) who, in a 
single paper, proposed both it and the rank-sum test for two independent samples. For more 
details we refer Wilcoxon. The test was popularized by Siegel in his influential text book on 
nonparametric statistics. Siegel used the symbol T for the value defined below as W. In 
consequence, the test is sometimes referred to as the Wilcoxon T test, and the test statistic is 
reported as a value of T. Other names may include the "t-test for matched pairs" or the "t-test 
for dependent samples". Walpole et al examined that Wilcoxon signed-rank test based on 
assumption of symmetric and continuous distribution considers both difference and how 
much difference is. The median is identical to the mean µ according to symmetric 
assumption. It includes four following steps: 
 

Step 1. Calculating all deviations between data points and µ0, we have D = {d1, d2,…, dn} 
where di = xi – µ0 and di ≠ 0. Note that data point xi is instance of random variable X. 
 

Step 2. Assigning a rank r i to each deviation di without regard to sign, for instance, rank 
value 1 and rank value n to be assigned to smallest and largest absolute deviation (without 
sign), respectively. If two or more absolute deviations have the same value, these deviations 
are assigned by average rank. For example, if 3rd, 4th  and 5th deviations get the same value, 
they receive the same rank (3+4+5) / 3 = 4. We have a set of ranks R = { r1, r2,…, rn} where 
r i is the rank of di. 
 

Step 3. Let w+  and w- be the sum of ranks whose corresponding deviations are positive and 
negative, respectively. We have w+  =∑ ������

	and w-  =∑ ����	�
	and w = min(w+ , w-). Note 

that w is the minimum value between w+  and w- 
 

Step 4. In flavor of H1: µ < µ0, H0 is rejected if w+ is sufficiently small. In flavour of H1: µ > 
µ0, H0 is rejected if w- is sufficiently small. In case of two-sided test H1: µ ≠µ0, H0 is rejected 
if w is sufficiently small. The concept sufficiently small is defined via thresholds or pre 
computed critical values. The value w+, w- or w is sufficiently small if it is smaller than a 
certain critical value with respect to significant level α. 
 

C.  Mann-Whitney Test 
 

Use this when two different groups of participants perform both conditions of your 
study: i.e., it is appropriate for analysing the data from an independent-measures design with 
two conditions. Use it when the data do not meet the requirements for a parametric test (i.e. if 
the data are not normally distributed; if the variances for the two conditions are markedly 
different; or if the data are measurements on an ordinal scale). Otherwise, if the data meet the 
requirements for a parametric test, it is better to use an independent-measures t-test (also 
known as a "two-sample" t-test). The logic behind the Mann-Whitney test is to rank the data 
for each condition, and then see how different the two rank totals are. If there is a systematic 
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difference between the two conditions, then most of the high ranks will belong to one 
condition and most of the low ranks will belong to the other one. As a result, the rank totals 
will be quite different. On the other hand, if the two conditions are similar, then high and low 
ranks will be distributed fairly evenly between the two conditions and the rank totals will be 
fairly similar. The Mann-Whitney test statistic "U" reflects the difference between the two 
rank totals. The SMALLER it is (taking into account how many participants you have in 
each group) then the less likely it is to have occurred by chance. A table of critical values of 
U shows you how likely it is to obtain your particular value of U purely by chance. Note that 
the Mann-Whitney test is unusual in this respect: normally, the BIGGER the test statistic, the 
less likely it is to have occurred by chance).  
 
CONCLUSION 
 

Parametric and nonparametric are two broad classifications of statistical procedures. 
Parametric tests are based on assumptions about the distribution of the underlying population 
from which the sample was taken. The most common parametric assumption is that data are 
approximately normally distributed. Non-parametric tests do not rely on assumptions about 
the shape or parameters of the underlying population distribution. If the data deviate strongly 
from the assumptions of a parametric procedure, using the parametric procedure could lead 
to incorrect conclusions. You should be aware of the assumptions associated with a 
parametric procedure and should learn methods to evaluate the validity of those assumptions. 
If you determine that the assumptions of the parametric procedure are not valid, use an 
analogous nonparametric procedure instead. The parametric assumption of normality is 
particularly worrisome for small sample sizes (n < 30). Nonparametric tests are often a good 
option for these data. It can be difficult to decide whether to use a parametric or non-
parametric procedure in some cases. Nonparametric procedures generally have less power for 
the same sample size than the corresponding parametric procedure if the data truly are 
normal. Interpretation of nonparametric procedures can also be more difficult than for 
parametric procedures. Non-parametric model is less efficient than parametric model because 
it lacks valuable information under sample when it has no knowledge about the distribution. 
All properties of distribution such as mean, variance, standard deviation, median, mode, 
skewness, kurtosis, etc are essential information of which nonparametric model does not take 
advantages. 
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